|
Form Aggproved
AD" A279 645 "ATION PAGE Pt N, (Z
et mmnmmnmwmmmqmmmm
pon - u-wuw.wocm ' M. v
T8 S REPORT TYPE AND DATES
T S TGOS .
94032581.11354, AVE: 94ddc500_4
DDC-I, DACS Sun SPARC/Solaris Native Ada COmpiler System,
.Version 4.6.2
National Institute of Standards and Technology
Gaithersburg. Maryland
ST NG SREANZATION RAME S AR 3. PEFRFORMING
ORGANIZATION
uaﬂa? éggi’:iﬁg&% R>andards and Technology
Ga‘Ithersburg, Maryland 20899
T SO SAN NI
AGENCY
|
i
MAY 2 6 19948 B
S DRETREOTSNAVACAECY G [e
Approved for Public Release; - distribution unlimited
s (Maximum 200
Host/Target: Sun SPARCclassic (under Solaris, Release 2.1)
14, SUBECT 5. NUMBER OF
Ada programing language, Ada Compler Validation Summary Report, A -
pb Val. Testing, Ada Val. Office, Ada Val. Haci ity
[70. SECURITY 20, LMITATION OF
< CLASSIFICATION
UNCLASSIFIED UNCLASSIFIED UNCLASSIFED
ol Prescribed by ANSI 84,

94 5 25 027

AVF Control Number: NIST94DDC500_4_1.11
DATE COMPLETED

BEFORE ON-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Ada COMPILER -
VALIDATION SUMMARY REPORT:
Certificate Number: 940325S1.11354
DDC-I
DACS Sun SPARC/Solaris Native Ada Compiler System, Version 4.6.2
sun SPARCclassic => Sun SPARCclasric

Prepared By:
Software Standards Validation Group
Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

Accesion For

NTIS CRA& }g
DTIC TAB
Unannounced O
Justification

By
Dist.ibution |

Availability Codes

. Avail and|or
Dist Special

Al |

AVF Control Number: NIST94DDCS00_4_1.11
Certificate Information

The following Ada implementation was tested and determined to pass ACVC

1.11. Testing was completed on March 25, 1994. .

Ccibilcr Name and Version: DACS Sun SPARC/Solaris Native Ada Compiler
System, Version 4.6.2

Host Computer System: Sun SPARCclassic running under SOIaris,
Release 2.1
Target Computer 8yst¢n: Sun SPARCclassic running under Solaris,

Release 2.1

See section 3.1 for any additional information about the tcsting
environment.

As a result of this validation effort, vValidation Certificate
94032581.11354 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-1815B is approved by ANSI.

This report has been reviewed and is approved.

. 37
Mr. L. Arnold Johhson
Manager, Software Standards
Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

o.s.h.
ion Organization ;; Ada Joint Program Office
ff} Director,YComputer & Software David R. Basel
Engineering Division Deputy Director,
Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301
U.S.A.

The following declaration
Customer:
Certificate Awardee:

Ada Validation Facility:

NIST94DDCS00_4_1.11
DECLARATION OF CONFORMANCE

of conformance was supplied by the customer.
DDC-I
DDC-I

National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)

Software Standards Validation Group

Building 225, Room A266
Gaithersburg, Maryland 20899

U.S.A.
ACVC Version: 1.11
Ada Implementation:
Compiler Name and Version: DACS Sun SPARC/Solaris Native Ada Compiler System,

Host Computer System:
Target Computer System:

Declaration:

Version 4.6.2
Sun SPARCclassic running under Solaris, Release 2.1

Sun SPARCclassic running under Solaris, Release 2.1

I the undersigned, declare that I have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed

above.

;Z"-"F"“’ #/{ Lt re— G320

Customér Sidnature

Company DDC-I
Title

Date

Cepfit
Company DDC-I
Title

chs‘ "l// éd{f')‘/’G 5)‘2r

cate’/Awardee Signature Date

P

TABLE OF CONTENTS

CHAPTER l.ccccccccetoessacoosccocsessoconssscscccnscsancnsssecl=l
INTRODUCTION. c cccoveccccccccvsccsscscsoscsssncssccsacccssocsscssl=~l
1.1 USE OF THIS VALIDATION SUMMARY REPORT..:ccccceesl=-l

1.2 REFERENCES....cccccecccesccccsccsscsossssavscssscssel=2

103 Acvc TBST CLASSESQOQ.0.0.....0............-...'01-2

1.4 DEFINITION OF TERMS..ccccecccccsscscccsccscccscsossel=3

m2’...........'....................................'2-1
IMPLEMENTATION DEPENDENCIES..c.cccccccccccccsscescscncesc2=l
2.1 WITHDRAWN TESTS..ccccccccscscscccsccccsssssccsscced=l

2-2 INAPPLICABLE TESTS.....-........................2'1

2.3 TEST MODIFICATIONS...ccccccccccccccscccsscsscsocccel=3

CHAPTER 3. c¢ccccsccsccscscncscssssncssasossscssccsssscssscscscasscscssd=l
PROCESSING INFORMATION. .c.cccccccococsccocccsccsscsacssaseld=l
3.1 TESTING ENVIRONMENT. .cccccccccsccccccscsccscccscca3d=l

3.2 SUMMARY OF TEST RESULTS...ccccccececccccccccccseld=l

3.3 TEST EXECUTION........-........................-3'2

APPENDIX A.....o......o.o.‘.o........o...o.oo.o..o..o......h-l
HACRO PAMETERSQ."..................'.'.'.‘.......OQQOA-I

APPENDIX B...o.o......o..o0...00....O......oo......'..'....B-l
coupImTION SYSTEM omIoNs.o.0...Q...o.o..'..oo.......ooa-l
LINKER om‘IoNs....o......0....0‘..Q..600.....0......-..-3-2

APPENDIX c......oo..oo...'.lo..-..0.cO.ooo.oo...oooc..on-..c-l
APPENDIX F OF THE Ada STANDARDO00..0.'00.0.....'000.....c-l

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro92] against the Ada Standard [Ada83)
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to (Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89]).

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (S U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road

springfield, Virginia 22161

U.s.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation oOrganization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria, Virginia 22311-1772

U.S.A.

1.2 REFERENCES

(Ada83)

ANSI/MIL-STD—IBISA, February 1985 and 150 8652-1987.

(Pro92] Ada Compilexr Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[(UG89]) Ada cCompiler Validation capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three. Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowved by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK_FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are no:t executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values-~-for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. 1In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UG89]).

In order to pass an ACVC an Ada implementation must process each

test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation
Capability (AcvC)

Ada Implementation

Ada Joint Program
Office (AJPO)

Ada Validation
Facility (AVF)

Ada Validation
Organization (AVO)

Compliance of an
Ada Implementation

The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

The means for testing compliance of ada
implementations, Validation consisting of
the test suite, the support programs, the
ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

An Ada compiler with its host compufér
system and its target computer system.

The part of the certification body which
provides policy and guidance for the Ada
certification Office system.

The part of the certification body which

carries out the procedures required to
establish the compliance of an Ada
implementation.

The part of the certification body that
provides technical guidance for operations
of the Ada certification system.

The ability of the implementation to pass an
ACVC version.

Computer System

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable Test

IsO

Operating System

Target Computer
Systen

A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- vwritten or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Fulfillment by a product, process, or
service of all requirements specified.

An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

A formal statement from a customer assuring
that conformity is realized or attainable on
the Ada implementation for which validation
status is realized.

A computer system where Ada source programs
are transformed into executable form.

A test that contains one or more test
objectives found to be irrelevant for the
given Ada implementation.

International Organization for
Standardization.

The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A

-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>.<subsection>:
<paragraph>."

Software that controls the execution of
programs and that provides services such as
resource allocaticn, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

A computer system where the executable form
of Ada programs are executed.

1-4

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Wwithdrawn Test

The compiler of a validated Ada
implementation.

An Ada implementation that has been
validated successfully either by AVF testing
or by registration (Pro92].

The process of checking the conformity of an
Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

CHAPTER 2
IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B2700SA E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C355081 C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B0O2A C55BO6A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CCl223A BCl226A CCl226B BC3009B BD1B02B BD1BO6A
AD1BOSA BD2A0O2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CDS5111A CD7004C ED7005D CD700S5E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD900SA CD9005B CDA201E CE21071 CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:
C24113L..Y (14 tests) C35705L..Y (14 tests)

2-1

C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..2 (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..2 (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

C24113I..K (3 tests) use a line length in the input file which
exceeds 126 characters.

The following 20 tests check for the predefined type LONG_INTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C

- C45502C C45503C C45504C C45504F C45611C

C45613C C45614C C45631C Cc45632C B52004D

C55BO07A B55B09C B86001W C86006C CD7101F
C35404D, C45231D, B86001X, C86006E, and CD7101G check for a

predefined integer type with a name other than INTEGER,
LONG_INTEGER, or SHORT_INTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORT FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with
a name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE_OVERFLOWS is FALSE for floatlng point types and the results
of various floating-point operations lie outside the range of the
base type: for this implementation, MACHINE OVERFLOWS is TRUE.

C4A013B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type:;
this expression is rejected by the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.
CA2009C

and CA2009F check whether a generic unit can be

2-2

instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
¢sneric unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2AB4E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

The 18 tests listed in the following table check that USE_ERROR is
raised if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Opei:'ation Mode File Access Method

CE2102E CREATE OUT_FILE SEQUENTIAL_IO
CE2102F CREATE INOUT FILE DIRECT_IO
CE2102J CREATE OUT_FILE DIRECT IO
CE2102N OPEN IN_FILE SEQUENTIAL_IO
CE21020 RESET IN_FILE SEQUENTIAL_IO
CE2102P OPEN OUT_FILE SEQUENTIAL_IO
CE2102Q RESET OUT_FILE SEQUENTIAL_IO
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT_FILE DIRECT_IO
CE2102T OPEN IN_FILE DIRECT IO
CE2102U RESET IN_FILE DIRECT IO
CE2102V OPEN OUT_FILE DIRECT IO
CE2102W RESET OUT_FILE DIRECT IO
CE3102F RESET Any Mode TEXT_IO
CE3102G DELETE ——====—- TEXT_IO
CE31021 CREATE OUT_FILE TEXT_IO
CE3102J OPEN IN_FILE TEXT_IO
CE3102K OPEN OUT_FILE TEXT_IO

The 3 tests listed in the following table check the given file
operations for the given combination of mode and access method:;
this implementation does not support these operations.

Test File Operation Mode File Access Method

CE2105A CREATE IN FILE SEQUENTIAL_IO
CE2105B CREATE IN_FILE DIRECT_ IO
CE31089A CREATE IN_FILE TEXT_IO

CE2203A checks that WRITE raises USE_ERROR if the capacity of an

2-3

external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE_ERROR if the capacity of an
external direct file is exceeded; this implementation cannot
restrict file capacity.

CE3111B and CE3115A associate multiple internal text files with the
same external file and attempt to read from one file what was
written to the other, which is assumed to be immediately available;
this implementation buffers output. (Se2 section 2.3.)

CE3304A checks that SET LINE_LENGTH and SET_ PAGE_LENGTH raise
USE_ERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value
of COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 69 tests.
The following tests were split into two or more tests because this

implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

B22003A
B35101A
B38009B
B61001R
B83EO1D
B91002C
B91002J
B95077A
BC1109D

B26001A
B37106A
BS5A01A
B61001W
B83EOClE
B91002D
B91002K
B97103E
BC1202A

B26002A
B37301B
B61001C
B67001H
B85001D
B91002E
B91002L
B97104G
BC1202F

B26005A
B37302A
B61001F
B83A07A
B85008D
B91002F
B95030A
BA1001A
BC1202G

B28003A
B38003A
B61001H
B83A07B
B91001A
B91002G
B95061A
BA1101B
BE2210A

B2900C1A
B38003B
B61001I
B83A07C
B91002A
B91002H
B95061F
BC1109A
BE2413A

B33301B
B38009A
B61001M
B83EO1C.
B91002B
B910021
B95061G
BC1109C

CD2A83A was graded passed by Test Modification as directed by the
AVO. This test uses a length clause to specify the collection size
for an access type whose designated type is STRING; eight
designated objects are allocated, with a combined length of 30
characters. Because of this implementation's heap-management
strategy and alignment requirements, the collection size at line 22
had to be increased to 812.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the Avo. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation

2-4

of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AI-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
vas modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE3111B and CE3115A were graded inapplicable by Evaluation
Moditication as directed by the AVO. The tests assume that output
from one internal file is unbuffered and may be immediately read by
another file that shares the same external file. This
implementation raises END_ERROR on the attempts to read at lines 87
and 101, respectively.

CHAPTER 3
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)
N Telephone: 602-275-7172
Telefax: 602-275-7502

For sales information~about this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)
Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that wvere
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

a) Total Number of Applicable Tests 3783

b) Total Number of Withdrawn Tests 104
¢) Processed Inapplicable Tests 283
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests (1]

f) Total Number of Inapplicable Tests 283 (ct+dte)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on~site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host/target
computer system. The results vere captured on the host/target
computer systen.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete 1listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-list
Test output, compiler and linker 1listings, and job logs were

captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

5 ADA COMPILER

emﬂgnntionﬁles.mdﬂnpmmmlihnryused.

The input to the compiler consists of the source file, the configuration file (which controls the
format of the list file), and the compiler options. Section 5.1 provides a list of all compiler
options, and Section 5.2 describes the source and configuration files.

Output consists of an object placed in the program library, diagnostic messages, and optional
listings. The configuration file and the compiler options specify the format and contents of the
list information. Output is described in Section 5.3.

" If any diagnostic messages are produced during the compilation, they are output in the diagnostic

file and on the current output file. The diagnostic file and the diagnostic message format are
described in Section 5.3.2.

The compiler uses a program library during the compilation. The compilation unit may refer to
units from the program library, and an intemal representation of the compilation unit will be

included in the program library as a result of a successful compilation. The program library is
described in Chapter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 Invocation Command

Invoke the Ada compiler with the following command:

ada {<option>} <source-or-unit-name> {<source-or-unit-name>}

39

[

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Compiler

§.1.1 Summary of Options
This section presents a summary of options supporied by the compiler.

OPTIONS DESCRIPTION REFERENCE
-auto_inline Small local subprograms are automatically 5.12

inline expanded.
-body Compile body unit from source saved in library. 5.13
-nocheck <keyword>{,ckeyword>} Suppress generation of run-time constral:x checks. 5.1.4
-configuration <fie-name> Specifies the file used by the compiler. 515
~debug Specifies that information for the DDC-I 5.1.6

Symbolic Ada Debugger is to be generated.
<lbrary <flle-name> Specifies the program library to be used. 5.1.7
-list Creates a source list file. 5.1.8
-machine_code Generates a machine code dump for the compilation. 5.1.9
-optimize <keyword>{,<keyword>} Specifies compiler optimizations. 5.1.10
-profile Specifies that code for profiling is to be generated. 5.1.11
-progress Displays compiler progress. 5.1.12
-Nosave_source The source is not saved in the program library. 5.1.13
-specification Compile specification unit from source saved

in library. 5.1.14
-warnings Suppress wamings from the compiler. 5.1.15
-xref Creates a cross reference listing. 5.1.16
Example:

$ ada -list testprog
This example compiles the source file testprog and generates a list file with the name testprog lis.

Example:
$ ada -1ib my library test

This example compiles the source file test into the library my_library.

40

. DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Compiler

Defalt values exist for options as indicated in the following sections. Option names may be
abbrevisted (characters omitted from the right) as long as no ambiguity arises.

5.12 AUTO_INLINE
Symtax:
~auto_line

This option specifies whether local subprograms should be inline expanded. The inline expansion
only occurs if the subprogram contains no more than 3 object declarations (and no other
declarations), no more than S statements and no exception handler and if the subprogram fulfills
the requirements defined for pragma inline. A waming is issued when automatic inline expansion
is performed.

5.13 BODY

Syntax:

-body

When using the option -body the Ada compiler will recompile the body of the unit specified as
parameter to the Ada compiler (see section 5.1.17) into the current sublibrary. The source code

saved in the program library at the previous compilation of the body is used as the source code
to be compiled. If no source code is present or the body for the unit does not exist in the library,

an error message is issued. This option is primarily for use by the Ada Recompiler (see chapter
D.

5.14 NOCHECK
Symtax:
-nocheck <keyword>{,<keyword>}

By default, all run-time checks listed below will be generated by the compiler. The following
explicit checks can be suppressed:

ALL Suppress all checks.

INDEX Index check.

ACCESS Check for access values being non NULL.
DISCRIMINANT Checks for discriminated fields.

LENGTH Array length check.

41

DACS Sun SPARC/SunOS and Sun SPAR(C/Solaris Native Ada Compiler System, User's Guide

Ada Compiler
RANGE Checks for values being in range.
OVERFLOW Explicit overflow checks.
ELABORATION Checks for subprograms being elaborated.
STORAGE Checks for sufficient storage available.

Note that the Division_check suppression mentioned in ARM 11.7 is not implemented.

5.1.5 CONFIGURATION_FILE
Syntax:
-coofiguration <flle-name>

This option specifies the configuration file to be used by the compiler. The configuration file
allows the user to format compiler listings, set emor limits, etc. If the option is omitted the
configuration file designated by the name conflg is used by default. Section 5.2.2 contains a
description of the configuration file.

$.1.6 DEBUG

Syitax:

-debug

Generate debug information for the compilation a:d store the information in the program library.
This is necessary if the unit is to be debugged with the DDC-I Ada Symbolic Cross Debugger.
Note that the program must also be linked with the -debug option, if the program is to be
debugged with the DDC-I Ada Symbolic Cross Debugger. See Section 6.3.3.1. Please note that
no extra information is included in the code or data generated.

5.1.7 LIBRARY

Syntax:

-library <ibrary-name>

This option specifies the current sublibrary that will be used in the compilation and will receive

the object when the compilation is complete. By specifying a current sublibrary, the current
program library (current sublibrary and ancestors up to root) is also implicitly specified.

42

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide
. Ada Compiler

If this option is omitted, the sublibrary designated by the environment variable name
ADA_LIBRARY is used as the cumrent sublibrary. Section 5.4 describes how the Ada compiler
uses the library.

S.18 LIST

Syntax:

-list

-list specifies that a source listing will be produced. The source listing is written on the list file,

which has the name of the source file with the extension .lis. Section 5.3.1.1 contains a
description of the source listing.

-

§.1.9 MACHINE_CODE

Syntax:

-machine_code

Dump a machine code list of the compiled code at standard output. The instructions are dumped
symbolically, but addresses are not. Calls are described by a "patch", which consists of a unit

number and an entry number. The unit number is a unique number defining the library unit and
the entry number is the number of the subprogram within that unit.

5.1.10 OPTIMIZE
Syntax:
-optimize <keyword>{,<keyword>}

This option specifies which optimizations will be performed during code generation. Default is
no optimizations.

Selection of optimizations be done in two basic ways.
1) Selecting individual optimizations.
2) Selecting predefined classes of optimizations.

43

DACS Sun SPARC/SunOS and Sun S™ARC/Solaris Native Ada Compiler System, User's Guide
Ada Compiler

(NOJLOOP_REGISTERS[=<number-of-iterations>)
Controls the extent to which registers are allocated to variables in loops,
- particularly inner loops.

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer shall loop through the code. If no level is
specified only one loop will be performed.

[NOJCOMMON_SUBEXPRESSION_ELIMINATION{=<number-of-iterations>]
Specify to which extent common subexpression elimination should be
performed.

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer shall loop through the code. If no level is
specified only one loop will be performed.

[NOICOPY_PROPAGATION([=<number-of-iterations>}
Specify to which extent copy propagation should be perfonmed.

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer shall loop through the code. If no level is
specified only one loop will be performed.

[NOJCONSTANT_FOLDING
Controls whether arithmetic expressions which have become static due to
other optimizations are calculated at compile time and folded into the code.

[NOJLOOP_UNROLLING
Performs unrolling of static loops into sequential code. The algorithm for
deciding whether a loop is a candidate for unrolling is given in the
Reference Manual.

[NOJLOOP_INVARIANT_CODE_MOTION
Controls the movement of invariant code outside of loops.

[NOJDEAD_CODE_REMOVAL[=<number-of-iterations>]
Controls whether dead code should be removed or not. Dead code can
occur when conditions become static or when a variable is not used
anymore. Please note that this optimization can be a very time consuming.

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer shall loop through the code. If no level is
specified only one loop will be performed.
The following options select a predefined level of optimizations:
LOW - Selects a predefined set of optimizations equal to the following list:
LOOP_REGISTERS, COMMON_SUBEXPR,
COPY_PROPAGATION, CONSTANT_FOLDING,

NODEAD_CODE_REMOVAL, LOOP_UNROLLING,
LOOP_INVARIANT_CODE_MOTION

4

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide
Ada Compiler

MEDIUM - Selects a predefined set of optimizations equal to the following list:
LOOP_REGISTERS=25, COMMON_SUBEXPR=25,
COPY_PROPAGATION=25, CONSTANT_FOLDING,
DEAD_CODE_REMOVAL, LOOP_UNROLLING,
LOOP_INVARIANT_CODE_MOTION

HIGH - Selects a predefined set of optimizations equal to the following list:
LOOP_REGISTERS=1000, COMMON_SUBEXPR=1000,
COPY_PROPAGATION=1000, CONSTANT_FOLDING,
DEAD_CODE_REMOVAL=1000, LOOP_UNROLLING,
LOOP_INVARIANT_CODE_MOTION

ALL - Equivalent to HIGH

$ ada -optimize all example 1

Both of these commands compile the program with all the optimizations active at their highest
levels.

$ ada -opt low,loop_reg=1000,noloop_unroll) example 2

This command compile the program with low optimizations,but no loop_unrolling is wanted and
registers should be used to the greatest extent possible in loops.

5.1.11 PROFILE
Syntax:
-profile

This option specifies that code for profiling shall be generated. This option in conjunction with
the linker option profile enables profiling of an executable program.

5.1.12 PROGRESS
Syntax:
-progress

When this option is given, the compiler will output data about which pass the compiler is
currently running.

45

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide
Ada Compiler

5.1.13 NOSAVE_SOURCE

Syntax:

-ROsave_source

When -nosave_source is specified, source code will not be retained in the program library, this
save some space in the sublibrary. The default is to save a copy of the compiled source code in
the program library. Hereby the user is always cerain of what version of the source code
compiled. The source code may be displayed from the sublibrary with the PLU Type command.

Using -nosave_source will help keeping library sizes smaller, but it will not be possible to use
the recompiler or the symbolic Ada Debugger.

5.1.14 SPECIFICATION

Syntax:

-specification

When using the option -specification the Ada compiler will recompile the specification of the unit
specified as parameter to the Ada compiler (see section 5.1.17) into the current sublibrary. The
source code saved in the program library at the previous compilation of the specification is used
as the source code to be compiled. If no source code is present or the specification for the unit

does not exist in the library, an error message is issued. This option is primarily for use by the
Ada Recompiler (see chapter 7).

5.1.15 WARNINGS

Syntax:

-warnings

Suppress wamings from the compiler in the diagnostics file. All diagnostics will always come on
standard output, only the contents of the diagnostics file is affected by the wamings option. If a

compilation only generates warnings and the wamings option is specifies no diagnostics file is
created.

5.1.16 XREF

Syntax:

-xref

A cross-reference listing can be requested by the user by means of the option -xref in conjunction
with option list. If the -xref option is given and no severe or fatal emors are found during the

compilation, the cross-reference listing is written to the list file. The cross-reference listing is
described in Section 5.3.1.3.

46

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Compiler

5.1.17 Source Flle Parameter

<source-or-unit-name> {<source-or-unit-name>}

This parameter specifies either the text file containing the Ada source text to be compiled or,
when option -body -specification is used, the name of the unit to be compiled. When interpreted

as a file name, the file type .ada is assumed by default. More than one file name can be
specified, each <source-file-name> can be a file name with wildcards as defined by the shell.

The compilation starts with the lefimost file name in the file name list, and ends with the
rightmost. If the list of file names includes a file name with wildcards, the files matching the
wildcard name are compiled in alphabetical order. If any file name occurs several times in the
list of file names, the file is compiled several times, i.e. one file is compiled as many times as
its name occurs in the list of file names.

The allowed format of the source text is described in Section 5.2.1.

5.2 Compiler Input

Input to the compiler consists of the command line options, a list of source text files and,
optionally, a configuration file.

§.2.1 Source Text

The user submits one file containing a source text in each compilation. The source text may
consist of one or more compilation units (see ARM Section 10.1).

The format of the source text must be in ISO-FORMAT ASCII. This format requires that the
source text is a sequence of ISO characters (ISO standard 646), where each line is terminated by
either one of the following termination sequences (CR means carriage retum, VT means vertical
tabulation, LF means line feed, and FF means form feed):

1) A sequence of one or more CRs, where the sequence is neither immediately preceded nor
immediately followed by any of the characters VT, LF, or FF.

2) Any of the characters VT, LF, or FF, immediately preceded and followed by a sequence
of zero or more CRs.

In general, ISO control characters are not permitted in the source text with the following
exceptions:

1) The horizontal tabulation (HT) character may be used as a separator between lexical units.
2) LF, VT, FF, and CR may be used to terminate lines, as described above.

47

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Compiler

The maximum number of characters in an input line is determined by the contents of the
configuration file (see Section S5.1.4). The control characters CR, VT, LF, and FF are not
considered a pan of the line. Lines containing more than the maximum number of characters are
truncated and an error message is issued.

5.2.2 Configuration File
Centain processing characteristics of the compiler, such as format of input and output, and error
limit, may be modified by the user. These characteristics are passed to the compiler by means
of a configuration file, which is a standard UNIX text file. The contents of the configuration file
must be an Ada positional aggregate, written on one line, of the type
CONFIGURATION_RECORD, which is described below.
The configuration file "config" is not accepted by the compiler in the following cases:

1) The syntax does not conform with the syntax for positional Ada aggregates.

2) A value is outside the ranges specified.

3) A value is not specifi=d as a literal.

4) LINES_PER_PAGE is not greater than TOP_MARGIN + BOTTOM_MARGIN.

5) The aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is written on the
current output file and the compilation is terminated.

This is the record whose values must appear in aggregate form within the configuration file. The
record declaration makes use of some other types (given below) for the sake of clarity.

type CONFIGURATION RECORD is

record
IN_FORMAT : INFORMATTING;
OUT_FORMAT : QUTFORMATTING;
ERROR_LIMIT : INTEGER;

end record;
type INPUT_FORMATS is (ASCII);

type INFORMATTING is
record
INPUT_FORMAT : INPUT_FORMATS:
INPUT_LINELENGTH : INTEGER range 70..250;
end record; :

type OUTFORMATTING is

record
LINES_PER_PAGE : INTEGER range 30..100;
TOP_MARGIN : INTEGER range 4.. 90;
BOTTOM_MARGIN : INTEGER range 0.. 90;

48

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide

Ada Linker

Main Program Name
Ada Libra

Linker Options

Linker Logical Names
Ada Linker Options

Target Linkex

RTS Configuration Options

Shell Script

emplate

Shell Script

UCD Module in A.OUT Format

!

Ada Library
Log File

1 Object Module in A.OUT Format

l

RTS Object Library
Users Object Libraries

l

Hative Linker

¥
An executable A.QOUT Module

Figure 6-1
The Linking Process

e

6.3 Invocation Command

Enter the following command to invoke the linker:

al {<option>} <unit-name>

The options and parameters supported by the linker are described in the following sections.

61

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Linker

6.3.1 Parameter

<unit-name>

‘This parameter is required and indicates the main program. The <unit_name> must be a library
unit in the current program library, but not necessarily of the current sublibrary.

Note, that a main program must be a procedure without parameters, and that <unit-name> is the

identifier of the procedure, not a file specification. The main procedure is not checked for
parameters, but the execution of a program with a main procedure with parameters is undefined.

6.32 Sulmmryofbpﬁons
This section briefly describes all options supported by the Ada linker.

OPTIONS DESCRIPTION REFERENCE
-debug Specify that the executable file is 6.3.3.1
to be used by the DDC-1 Svmbolic Ada
Debugger.
-noexceptions No spellings of user exce:tions will be 6.3.3.2
included in the executable file.
-executable <file-name> Specify the name of the executable file. 6333
~keep Perform Ada link only, and keeps 6.3.34
object files.
-library <library-name> Specify the library to be used in 6.3.35
the link.
-log <file-name> Specify creation of a log file. 6.3.3.6
-main_stack_size <natural> Default stack size for main program. 6.3.3.7
-period <duration> Timer resolution. 6.3.3.8
-priority <positive> Default task priority. 6.3.39
-profile Enable profiling of the executable program. 6.3.3.10
-selective Enables selective linking. 6.3.3.11
-statistics Display statistics. 6.3.3.12
-target_options <string> Specify a string which is passed to 6.3.3.13

the template without interpretation.

62

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide

task_stack_size <natural>
-tasks <natural>

template_file <template-name>
-notimer

-time_slice <duration>
-traceback_mode <keyword>

-wlibnrym

-warnings

Ada Linker :
Default stack size for all tasks. 6.3.3.14
" Maximum number of tasks. 6.3.3.15
Specify template file for the target link. 6.3.3.16

Disable timer setup in the executable program. 6.3.3.17
Task time slicing enabled and time slice value. 6.3.3.18

Enable traceback when a program has 6.3.3.19
an unhandled exception.

Libraries or object modules to include in link. 6.3.3.20
Specify that wamings are displayed. 6.3.3.21

All options must be entered in lowercase, and may be abbreviated to the minimal unique substring
(e.g. "-d" is sufficient to denote "-debug").

633 Ada Link Options

This section describes in detail all Ada link options, including default settings.

633.1 DEBUG
Syntax:
-debug

This option specifies that information for the DDC-1 Symbolic Ada Debugger is to be generated.
Please note that no extra information is included in the code or data generated.

6332 NOEXCEPTION TABLES

Syntax:
-noexceptions

This option specifies that no table containing the spellings of user-defined exceptions should be
included in the executable file. Without spellings for user-defined exceptions a stack trace for an
unhandled user-defined exception will appear with a reference to the unit number in which the
exception is defined and an exception number within the unit.

63

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Linker

6333 EXECUTABLE FILENAME

Syntax:

-executable <flle-name>

Specifies the name of the output module. Default is the name of the main program.

Examples:
$alp

Links the subprogram P and stores the executable program in the file p
$ al -exec my _exe dir/main p

Links the subprogram P and stores the executable program in the file main in the directory
my_exe_dir.

6334 KEEP
Syntax:
-keep

This option controls whether or not the native link phase is executed, i.c., whether or not control
is passed to the flexible linker template file, and the intermediate link files are preserved. The
option specifies to stop linking before the native link and keep the intermediate link files.

6335 LIBRARY

Syntax:

-library <library-name>

This option defines the program Iitrary that contains the <unit-name>. If <library-name> is not

specified, the default library specified by the environment variable ADA_LIBRARY will be
selected.

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Linker

6336 LOG

Syntax:

-log <flie-name>

The option specifies if a log file will be produced from the front end linker. As default, no log
g:“p:odmmbgﬂkmmm“infomﬁmmmemmofﬂnm The file

1) An elaboration order list with an entry for each unit included, showing the order in which
the units will be elaborated.

2) All options and their actual values.
3) The full name of the program library (the current sublibrary and its ancestor sublibraries).

6.33.7 MAIN STACK SIZE

Syntax:

-main_stack size <natural> (Default is 4096)

The main stack size option specifies the main program stack size N in 32 bit words. The range

of this parameter is limited by physical memory size. The range of main stack size is from 0 to
2,147,483,647

Configurable Data
The Ada linker generates the following data structures:

UCD$MP_Stack_Size N

UCD$MP_Stack Lowest addr
of MP stack

UCD$MP_Stack_Start Highest addr
of MP stack

65

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
. Ada Linker :

Example:
$ al -main 1024 p

- Link the program p with a stack of 4096 bytes.

6338 PERIOD

Syntax:

-period <decimal-number> (Default is 0.05)

The period option specifies the resolution of calls to the Run-Time System routine RTSSTIMER.
The number specifies the number of seconds between two successive calls to RTSSTIMER. The
number must be within the range duration’small to 2.0

Configurable Data

The Ada Linker generates the following 32 bit integer:

UCD$Timer absolute integer

6339 PRIORITY

Syntax:

-priority <integer> (Default is 16)

The priority option specifies the default priority N for task execution. The main program will run
at this priority, as well as tasks which have had no priority level defined via pragma PRIORITY.
The range of priorities is from 1 to 32,

Configurable Data

The Ada Linker generates the following constant data:

UCD$Priority N

DACS Sun SPARCISnnOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Linker
Example:
$ al -priority 8 p
- Link the subprogram P which has the main program and tasks running at default priority
8.

6.33.10 PROFILE
Syntax:
-profile

This option specifies that the executable program shall allocate memory for profiling information
and be linked with a profiling library. The option is used together with the DDC-1 Ada Profiler.
If problems with interrupted system calls then link with option -notimer (see Section 6.3.3.17).
Furthermore, the profiler timer has a higher resolution than the Ada timer, which makes better
profile information. If the program use task do not link with option -notimer.

633.11 SELECTIVE LINKING

Syntax:

-selective

Specifies that only those subprograms from each compilation which are referred to from other

subprograms i.c. only those subprograms which actually are in the program are linked within the
program, and thereby minimizing the size of the executable program.

6.33.12 STATISTICS
Syntax:
-statistics

Specifies that short statistics shall be displayed about how many compilation units included in the
program and how many dependencies they have.

6.33.13 TARGET OPTIONS

Syntax:
-target_options <string>

67

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Linker ‘

This option allows the user to specify target options which is passed to the native linker (1d)
without interpretation. It therefore allows the user to specify other options than those mentioned
in this section.
Exampile:

$ al -tazget "-L/usr/local/lib" p

- Links the subprogram P and substitutes the macro template %target_options% by the string
"-L/usr/local/lib".

This option allows any string t0 be propagated to the resulting command file via the macro
template %TARGET_OPTIONS%.

63.3.14 TASK STACK SIZE

Syntax:

-task_stack_size <natural> (Default is 1024)

This option sets the default storage size N in 32 bit words for stacks of all tasks. This value can
be overridden with a representation clause.

Configurable Data

The Ada Linker generates the following data structure:

UCD$Task_Stack_Size N
6.33.15 TASKS
Syntax:
-tasks <natural> (default is 128)

This option specifies the maximum number of tasks allowed by the RTS. If specified, N must
be greater than or equal to zero.

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide

Ada Linker
Configursbie Data
UCD$Max_Tasks N
UCD$TCBs N Task
Control
Blocks
(TCBS)
Example:

$ al -tasks 3 p

-

- Link the program p, which has at most 3 tasks, including the main program.

6.33.16 TEMPLATE

Syntax:

-tempiate_file <file-name>

This option specifies a template file to use for the native link. The default is to use the file

named Ada_templatetxt placed in the same directory as the Ada linker. See section 6.5 for an
explanation of the template file and the flexible linker.

6.33.17 NOTIMER

Syntax:
-notimer

‘This option disables timer setup in the executable program. Specifies that the Ada timer is not set
up. This causes that delays waits forever, and that the option -time_slice will not function. This
option is useful when debugging programs using dbx. The option is also useful when using the
-profile option, because the profile timer has a higher resolution than the Ada timer, which gives
a more detailed profiling information. The option can also be used to prevent interrupts at 1/O
operations with blocking and other kemel calis.

6.33.18 TIME SLICE

Syntax:
~time_slice <decimal-number>

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Linker

The time slice option specifies the time slicing period for tasks.
If specified, it is a decimal number of seconds representing the default time slice to be used. If

not specified, there will be no time slicing. The number must be in the range Duration’Small.2.0
and must be greater than or equal to the distance between two successive calls to RTSSTIMER.

Time slicing only applies t0 tasks running at equal priority. Because the RTS is a preemptive
priority scheduler, the highest priority task will always run before any lower priority task. Only
when two or more tasks are running at the same priority is time slicing applied to each task.
Time slicing is not applicable unless tasking is being used. ’l‘h:smammnﬂwtasksopuoumust
be set to at least 2 for time slice to be effective.

Configurable Data

The Ada Linker generates the following data:

UCD$Time_Slice absolute integer

= 0 -> No time slicing
/= 0 -> The length of a time slice

The number of timer ticks (USD$Time_Slice) constituting a time_slice is computed as
[TimeSlice/Period |

Example:
$ al -time 0.125 p

- Specifies tasks of equal priority to be time sliced each eighth of a second.

6.33.19 TRACEBACK MODE
Syntax:
-traceback_mode (never | main | always) (default is main)

This option instructs the exception handler 0 produce a stack trace when a program terminates
because of an unhandled exception. Disabling traceback (with never) exclude traceback tables
from the executable program. If never is specified, the RTS variable UCD$TRACE will be set
to 0 and no trace will be produced if the program terminates with an unhandled exception. If
main is specified a trace will be produced if the main program terminates with an unhandied
exception. The RTS variable UCDSTRACE will be set to 1. If the always is specified the RTS
variable UCDSTRACE will be set to 2 and a trace will be produced if either the main program
or a task terminate with an unhandled exception.

70

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide
Ada Linker

Configurable Data

UCD$Trace absolute integer

= 0 -> Trace disabled
= 1 -> Trace enabled for main program
= 2 -> Trace enabled for main program and tasks

63320 USER LIBRARY
Syntax:
-usr_library <file-name>

The user library option is intended for the specification of libraries or object files which should
contain the users own object code.

The user library option is also intended to specify libraries of routines referenced from the Ada
program via pragma INTERFACE.

63321 WARNINGS

Syntax:

-warnings

This option specifies that wamings are displayed if detected by the linker, otherwise they are

suppressed. Warnings can be generated when conflicts between target program attributes and the
specified options are found and when a package has an inconsistent body.

6.4 Linker Output
This chapter describes the results of the linking process.

6.4.1 Executable File

Using the default options and the template provided with the system the linking process will result
in an executable file which is ready for execution. This file is named after the main program:

<main_program_name>

!

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
. Ada Linker

6.42 Diagnostic Messages

Diagnostic messages from the Ada Linker are output to the current output file. The messages
are output in the order they are generated by the linker.

The linker may issue two kinds of diagnostic messages: warnings and severe errors.

6.4.2.1 Warnings
A waming reports something which does not prevent a successful linking, but which might be an
emor. A waming is issued if there is something wrong with the body unit of a program unit

which formally does not need a body unit, e.g. if the body unit is invalid or if there is no object
code container for the body unit.

6.422 Severe Errors

A severe error message reports an error which prevents a successful linking. Any inconsistency
detected by the linker will, for instance, cause a severe ermor message, e.g. if some required unit
does not exist in the library or if some time stamps do not agree.

A unit not marked as invalid in the program library may be reported as being invalid by the
linker if there is something wrong with the unit itself or with some of the units it depends on.

6.423 Return Codes

The linker set the retum code to the following values:

Error code Description

0 Success, warnings
1 Errors

2 Fatal Error

6.5 Flexible Linker

The DACS Ada Linker is referred to as a flexible linker because it has been designed to be very
flexible in the way it interfaces to target tools such as assemblers, librarians, and linkers. The
flexible linker can produce a target link in any manner that the user desires, i.e, the linker adapts
to each user’s needs in a simple and straightforward manner.

72

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the AcCVC. The meaning and purpose of these parameters are
explained in [UG89). The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line 1length, which is the value for
SMAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line

length.

Macro Parameter Macro Value

$MAX IN_LEN 126 -- Value of V

$BIG_ID1 (1..V=1 => A, V => 1)

$BIG_ID2 (1..V=1 => 'A', V => '21)

$BIG_ID3 (1..V/2 => 'A') & '3' & (1..V=1=-V/2 => 'A')
$BIG_ID4 (1..V/2 => 'A') & '4' & (1..V=-1-V/2 => 'A')
$BIG_INT LIT (1..V=3 => '0') & "298"

$BIG_REAL LIT (1..V-5 => '0') & "690.0"

$BIG_STRING1 ey g (1..V/2 => 'A') & tnne
$BIG_STRING2 teny & (1..V=-1-V/2 => 'A') & '1!' & ‘'nm
$BLANKS O (1..V=20 => ' V)

$MAX_LEN_ INT_ BASED_LITERAT
"2TH & (1..V-5 => '0') & "11:"

$MAX_LEN REAL BASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

SMAX_STRING_LITERAL '""! & (1..V-2 => 'A!') & 'wm

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value
ACC SIZE 32
ALIL 4
COUNT_LAST 2_147_483_647
DEFAULT MEM SIZE 2048%1024
DEFAULT_STOR_UNIT 8
DEFAULT_SYS NAME DACS_SPARC
DELTA DOC 241.04E-31

ENTRY_ADDRESS
ENTRY_ADDRESS1
ENTRY_ADDRESS2

SYSTEM."~" (16#10709180%)
SYSTEM."-" (16#10709188#;
SYSTEM."~" (16#107091904%)

FIELD_LAST 35
FILE_TERMINATOR '

FIXED NAME NO_SUCH_FIXED TYPE
FLOAT NAME NO SUCH_FIXED TYPE
FORM_STRING

G0 60 00 00 00 00 00 S0 48 00 08 B8 00 68 0% SO

FORM_STRING2
"CANNOT RESTRICT FILE_CAPACITY"

GREATER_THAN [FURATION 100000.0
GREATER_THAN_ DURATION_ BASF_LAST 200000.0
GREATER_THAN_ FLOAT BASE LAST 16#1.04E+32

GREATER THAN FLOAT SAFE _LARGE
GREATER ' THAN SHORT FIDAT SAFE_LARGE

16#5.FFFF_FO4E+31
16#5.FFFF_FO#E+31

HIGH PRIORITY 31
ILLEGAL EXTERNAL FILE NAMEl /NODIRECTORY/FILENAME1l
ILLEGAL EXTERNAL FILE_NAME2 /NODIRECTORY/FILENAME2

INAPPROPRIATE LINE_ LENGTH
INAPPROPRIATE PAGE_LENGTH
INCLUDE _ PRAGMA1

-1
-1

INCLUDE (“A28006D1.ADA"™)
INCLUDE_PRAGMA2

5.5

INCLUDE ("“B280OO6E1l.ADA")

INTEGER FIRST : -2147483648
INTEGER_LAST : 2147483647
INTEGER_LAST PLUS 1 : 2147483648
INTERFACE_LANGUAGE : AS
LESS_THAN_DURATION : =75000.0
LESS_THAN_DURATION BASE_FIRST : =131073.0
LINE_TERMINATOR s v
LOW_PRIORITY : 0
MACHINE_CODE_STATEMENT : NULL;
MACHINE_CODE_TYPE : NO_SUCH_TYPE
MANTISSA_DOC : 31
MAX_DIGITS : 15

MAX_INT T 2147483647

MAX_INT PLUS_1
NIN_INT

NAME
NAME_LIST

NAME_SPECIFICATION1

/hone/sparcla/ada}test/prevalid/work/xz120A
NAME_SPECIFICATION2 H

NEG_BASED_INT
NEW_MEM_STZE
NEW_STOR_UNIT
NEW_SYS_NAME
PAGE_TERMINATOR
RECORD_DEFINITION
RECORD_NAME
TASK_STZE
TASK_STORAGE_SIZE
TICK
VARIABLE_ADDRESS
VARIABLE_ADDRESS1

VARIABLE_ADDRESS2
YOUR_PRAGMA

2147483648

~2147483648
NO_SUCH_TYPE_AVAILABLE
DACS_SPARC

/home/sparcla/ada/test/prevalid/work/X2120B
NAME_SPECIFICATION3

/home/sparcla/ada/test/prevalid/work/X3119A

80 60 86 06 80 0§ 00 066 00 05 00 00 o0 00

16#F000000E#
2097152

8
DACS_SPARC

| I]

NEW INTEGER
MACHINE_INSTRUCTION

32

1024

2#1.04E-14
SYSTEM."-"(16#10709198#)
SYSTEM."-" (16#107091A0#)
SYSTEM."-" (16$107091A8#)
INTERFACE_SPELLING

APPENDIX B
COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this

ix, are provided by the customer. Unless specifically noted
otherwvise, references in this appendix are to compiler documentation and
not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to linker documentation and
not to this report.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is
type SHORT INTEGER is range -32_768 .. 32_767;
type INTEGER is range -2_147_483_648 .. 2_147_483_647:

type FLOAT is digits 6
range -16#0.FFFF_FF#E32 .. 16#0.FFFF_FF#E32;

type LONG_FLOAT is digits 15
range -16#0.FFFF_FFFF_FFFF_F8#E256 .. 16#0.FFFF_FFFF_FFFF_F8#E256;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

APP. F - IMPLEMENTATION DEPENDENT CHARACTERISTICS

This appendix describes the implementation dependent characteristics of DACS Sun SPARC/SunOS
and Sun SPARC/Solaris as required in Appendix F of the Ada Reference Manual
(ANSI/MIL-STD-1815A).

F.1 Impiementation Dependent Pragmas

‘This section describes all implementation defined pragmas.

F.1.1 Pragma INTERFACE_SPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters
that would be an invalid Ada subprogram identifier. This pragma must be used in conjunction

with pragma INTERFACE, i.., pragma INTERFACE must be specified for the non-Ada
subprogram name prior to using pragma INTERFACE_SPELLING.

F.1.1.1 Format
The pragma has the format:

pragma INTERFACE_SPELLING (subprogram name, string literal):
where the subprogram name is that of one previously given in pragma INTERFACE and the

string literal is the exact spelling of the interfaced subprogram in its native language. This pragma
is only required when the subprogram name contains invalid characters for Ada identifiers.

F.1.12 Example
function ASSEMBLY MODULE NAME return INTEGER;
pragma INTERFACE (AS, ASSEMBLY MODULE_NAME) ;

pragma INTERFACE SPELLING (ASSEMBLY_MODULE__NAME,
"Illegal$Ada_Name");

F.12 Pragma EXTERNAL NAME

This pragma allows an Ada program to export the name of an Ada subprogram so that it can be

169

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Implementation Dependent Characteristics

called from a non-Ada component.
F.1.2.1 Format
The pragma has the format:

pragma EXTERNAL NAME (ada entity, string literal)
where ada entity should be the name of:

* A permanent object, i.e. an object placed in the permanent pool of the compilation unit - such
objects originate in package specifications and bodies only.

-Acomantobjea.i.e.mobjeetphcedinﬂucmsmnpoolofmecompimionmﬁt-plase
note that scalar constants embedded in the code, and composite constants are NOT always
placed in the constant pool, because the constant is not considered constant by the compiler.

* A subprogram name, i.c. a name of a subprogram defined in this compilation unit - please
notice that separate subprogram specifications cannot be used, the code for the subprogram
MUST be present in the compilation unit code.

Objects or subprograms that are local to subprograms or block cannot have external names
associated. The entity being made extemal ("public”) MUST be defined in the compilation unit
itself. Attempts to name entities from other compilation units will be rejected with a waming.
The string literal literal is the external name associated the ada entity. The external name should
the unique. Specifying identical spellings for different ada entities will generate errors at compile
and/or link time, and the responsibility for this is left to the user. Also the user should avoid
spellings similar to the spellings generated by the compiler, e.g. M_<unit-no>_<section-no> and
other intemnal identifications.

It is also the responsibility of the user to preserve/restore register %g2 when/if retuming to Ada.

When an entity in an object the value associated with the symbol will be the relocatable address
of the first byte assigned to the object.

F.122 Example

This example shows how to export the name of an Ada subprogram and an integer object to be
used in a C routine. The C routine is called from the Ada program.

The Ada program:
package ext is
var : integer := 0;
pragma external name (var,"_var_name");
procedure outer_proc(a : integer):
pragma external name(inner_proc,“_inner_ proc");

end;

170

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide

Implementation Dependent Characteristics

package body ext is
procedure inner proc(a : integer) is
begin
var := var + a;
end inner_proc;
end;

with ext; use ext;
with report; use report:;
procedure extern_test is
procedure call_inner_ proc(a : integer);
pragma interface(c,call_inner_proc);
begin
test ("EXTERN_TEST","");
var := 1;
call _inner proc(3):
if var /= 7 then
failed("inner_proc not call properly");
nd if;
:sult;
L

The C program:;

extern inner_proc();
extern int var_name;
call_inner_proc(in)
int in;
{
var_name = var_name + in;
inner_proc(3);
}

F.2 Implementation Dependent Attributes
No implementation dependent attributes are defined.

F3 Package SYSTEM
The package SYSTEM is described in ARM 134.
package SYSTEM is

type ADDRESS is new INTEGER;
type NAME is (DACS_SPARC);

SYSTEM_NAME : constant NAME := DACS_SPARC;
STORAGE_UNIT : constant 1= 8;

MEMORY_SIZE : constant = 2048 * 1024;
MIN INT : constant := -2 147_483_648;
MAX INT : constant := 2_147_483_647;
MAX DIGITS . : constant = 15

MAX MANTISSA : constant = 31

m

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide
O e

Implementation Dependent
FINE_DELTA : constant := 241.04E-31;
TICK : constant := 2#1.04E-14;

subtype PRIORITY is INTEGER range 1..31;
type INTERFACE LANGUAGE is (C, AS); -- implementation dependent

Compiler system dependent types:
subtype Integer_16 is short_integer;

subtype Natural 16 is Integer 16 range
subtype Positive 16 is Integer_l16 range

= o

..Integer_16'last;
..Integer_16’last;

subtype Integer_32 is integer;
subtype Natural 32 is Integer_ 32 range 0..Integer_32‘last;
subtype Positive 32 is Integer_ 32 range 0..Integer_32'last;

end SYSTEM;

F.4 Representation Clauses

The representation clauses that are accepted are described below. Note that representation
specifications can be given on derived types as well.

F4.1 Length Clause
Four kinds of length clauses are accepted.
Size specifications:

The size attribute for a type T is accepted in the following cases:

- If T is a discrete type then the specified size must be greater than or equal to the number

of bits needed to represent a value of the type, and less than or equal to 32. Note that
when the number of bits needed to hold any value of the type is calculated, the range is
extended to include O if necessary, i.e. the range 3.4 cannot be represented in 1 bit, but
needs 3 bits.

If T is a fixed point type, then the specified size must be greater than or equal to the
smallest number of bits needed to hold any value of the fixed point type, and less than
32 bits. Note that the Reference Manual permits a representation, where the lower bound
and the upper bound is not representable in the type. Thus the type

type FIX is delta 1.0 range ~-1.0 .. 7.0;

is representable in 3 bits. As for discrete types, the number of bits needed for a fixed
point type is calculated using the range of the fixed point type possibly extended to
include 0.0.

If T is a floating point type, an access type or a task type the specified size must be equal

to the number of bits used to represent values of the type per default (floating points: 32
or 64, access types : 32 bits and task types : 32 bits).

172

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Impiementation Dependent Characteristics

- If T is a record type the specified size must be greater or equal to the minimal number
of bits used to represent values of the type per default.

- If T is an array type the size of the array must be static, i.c. known at compile time and
the specified size must be equal 1o the minimal number of bits used to represent values
of the type per defauit.

The size given in the length clause will be used when allocating space for values of the type in
all contexts ¢.g. as part of an array or record. For declared objects the size will be rounded to the
nearest number of bytes before the object is allocated.

Collection size specifications:

Using the STORAGE_SIZE attribute on an access type will set an upper limit on the total size
of objects allocated in the collection allocated for the access type. If further allocation is attempted,
the exception STORAGE_ERROR is raised. The specified storage size must be less than or equal
to INTEGER'LAST

Task storage size

When the STORAGE_SIZE attribute is given on a task type, the task stack area will be of the
specified size. The specified storage size must be less than or equal to INTEGER'LAST.
Small specifications

Any value of the SMALL attribute less than the specified delta for the fixed point type can be
given. .

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of
SHORT_INTEGER''FIRST .. SHORT_INTEGER’LAST. An enumeration representation clause may
be combined with a length clause. If an enumeration representation clause has been given for a
type the representational values are considered when the number of bits needed to hold any value
of the type is evaluated. Thus the type

type ENUM is (A,B,C);
for ENUM use (1,2,3);

needs 3 bits to represent any value of the type.

173

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide

Implementation Dependent Characteristics

F.43 Record Representation Clauses

When component clauses are applied to a record type, the following should be noted:

Components can start at any bit boundary. Placing ¢.g. non packed arrays on odd bit
boundaries will cause costly implicit conversion to be generated, however.

All values of the component type must be representable within the specified number of
bits in the component clause.

If the component type is cither a discrete type or a fixed point type, then the component

is packed into the specified number of bits (see however the restriction in the paragraph
above).

If the component type is not one of the types specified in the paragraph above, the default
size calculated by the compiler must be given as the bit width, i.e. the component must
be specified as

component at N range X..X + component_type’SIZE - 1

where N specifies the relative storage unit number (0,1,..) from the beginning of the
record, and X is any bit number.)

The maximum bit width for components of describe or fixed point types is 32.

If the record type contains components which are not covered by a component clause, they are
allocated consecutively after the component with the highest offset specified by a component
clause. Holes created because of component clauses are not otherwise utilized by the compiler.

When the compiler determines the size of a record component the following is taken into account
in the specified order:

a component clause

a length clause ("SIZE) on the component type
a possible pragma PACK on the record type
the default size of the component type

F4.3.1 Alignment Clauses

Alignment clauses for records are supported with the following restrictions:

The specified alignment boundary must be 1, 2, 4, 8, or 16.

The specified alignment must not conflict with the alignment requirement for the record
components, i.e. an alignment boundary of 4 is not accepted if the record has a component
of an array type with size 100 bytes (such arrays should be aligned on a 16 byte
boundary).

174

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide
Implementation Dependent Characteristics

F.S Names for Impiementation Dependent Components
None defined by the compiler.

F.6 Address Clauses

Address clauses are supported for scalar and for composite objects whose size can be determined
at compile time. Address clauses are not supported for subprograms, packages, tasks or task
entries.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same "size”. However, if scalar
type has different sizes (packed and unpacked), unchecked conversion between such a type and
another type is accepted if either the packed or the unpacked size fits the other type.

F8 Input/Output Packages

The implementation supports all requirements of the Ada language and the POSIX standand
described in document P1003.5 Draft 4.0/WG15-N45. It is an effective interface to the
SunOS/Solaris file system, and in the case of text /O, it is also an effective interface to the
SunOS/Solaris standard input, standard output, and standard error streams.

This section describes the functional aspects of the interface to the SunOS/Solaris file system,
including the methods of using the interface to take advantage of the file control facilities
provided.

The Ada input-output concept as defined in Chapter 14 of the ARM does not constitute a
complete functional specification of the input-output packages. Some aspects of the 1/O system are
not described at all, with others intentionally left open for implementation. This section describes
those sections not covered in the ARM. Please notice that the POSIX standard puts restrictions
on some of the aspects not described in Chapter 14 of the ARM.

The SunOS/Solaris operating system considers all files to be sequences of bytes. Files can either
be accessed sequentially or randomly. Files are not structured into records, but an access routine
can treat a file as a sequence of records if it arranges the record level input-output.

Note that for sequential or text files (Ada files not SunOS/Solaris extemal files) RESET on a file

in mode OUT_FILE will empty the file. Also, a sequential or text file opened as an OUT_FILE
will be emptied.

175

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’'s Guide
Implementation Dependent Characteristics

F&.1 External Files

An extemal file is either a SunOS/Solaris disk file, a SunOS/Solaris FIFO (named pipe), a
SunOS/Solaris pipe, or any device defined in the SunOS/Solaris directory. The use of devices such
as a tape drive or communication line may require special access permissions or have restrictions.
If an inappropriate operation is attempted on a device, the USE_ERROR exception is raised.
External files created within the SunOS/Solaris file system shall exist after the termination of the
program that created it, and will be accessible from other Ada programs. However, pipes and
temporary files will not exist after program termination.

Creation of a file with the same name as an existing external file will cause the existing file to
be overwritten.

Crestion of files with mode IN_FILE will cause USE_ERROR to be raised.
The name parameter to the input-output routines must be a valid SunOS/Solaris file name. If the

name parameter is empty, then a temporary file is created in the /usrAmp directory. Temporary
files are zutomatically deleted when they are closed

F.82 File Management

This section provides useful information for performing file management functions within an Ada
program.

The only restrictions in performing Sequential and Direct 1/0 are:
- The maximum size of an object of ELEMENT_TYPE is 2_147_483_647 bits.
- If the size of an object of ELEMENT_TYPE is variable, the maximum size must be
determinable at the point of instantiation from the value of the SIZE attribute.
The NAME parameter

The NAME parameter must be a valid SunOS/Solaris path name (unless it is the empty string).
If any directory in the path name is inaccessible, a USE_ERROR or a NAME_ERROR s raised.

The SunOS/Solaris names "stdin”, "stdout”, and "stderr” can be used with TEXT_IO.OPEN. No
physical opening of the external file is performed and the intemal Ada file will be associated with
the already open extemal file. These names have no significance for other /O packages.

Temporary files (NAME = null string) are created using tmpname(3) and are deleted when

CLOSED. Abnormal program termination may leave temporary files in existence. The name
function will retum the full name of a temporary file when it exists.

176

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide
Implementation Dependent Characteristics

The FORM parameter

The Form parameter, as described below, is applicable to DIRECT_IO, SEQUENTIAL_IO and
TEXT_IO operations. The value of the Form parameter for Ada 1/O shall be a character string.
The value of the character string shall be a series of fields separated by commas. Each field shall
consist of optional separators, followed by a field name identifier, followed by optional separators,
followed by "=>", followed by optional separators, followed by a field value, followed by optional
separators. The allowed values for the field names and the corresponding field values are
described below. All field names and field values are case-insensitive.

‘The following BNF describes the syntax of the FORM parameter:
form u= (tield {, field}*]
fields ;== rights | append | blocking |

terminal_input | fifo |
posix_file_descriptor

rights ::= OWNER | GROUP | WORLD =>

access {,access_underscor}
access ::= READ | WRITE | EXECUTE | NONE
access_underscor i= READ | _WRITE | _EXECUTE | _NONE
append ::= APPEND => YES | NO
blocking ::= BLOCKING => TASKS | PROGRAM
terminal_input ::= TERMINAL_INPUT => LINES | CHARACTERS
fifo ::= FIFO => YES | NO
posix_file_descriptor ::= POSIX_FILE_DESCRIPTOR => 2

The FORM parameter is used to control the following :
- File ownership:

Access rights to a file is controlled by the following field names "OWNER", "GROUP"
and "WORLD". The field values are "READ", "WRITE", "EXECUTE" and "NONE"
or any combination of the previously listed values separated by underscores. The access
rights field names are applicable to TEXT_1O, DIRECT_IO and SEQUENTIAL_IO. The
default value is OWNER => READ_WRITE, GROUP => READ_WRITE and WORLD
=> READ_WRITE. The actual access rights on a created file will be the default value
subtracted the value of the environment variable umask.

177

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide
Implementation Dependent Characteristics

Example

To make a file readable and writable by the owner only, the Form parameter should look
something like this: :

"Owner =>read_write, World=> none, Group=>none"

If one or more of the field names are missing the default value is used. The permission
field is evaluated in left-to-right order. An ambiguity may arise with a Form parameter
of the following:

"Owner=>Read_Execute_None_Write_Read"

In this instance, using the left-to-right evaluation order, the "None" field will essentially
reset the permissions to none and this example would have the access rights WRITE and
READ.

- Appending to a file:

Appending to a file is achieved by using the field name "APPEND" and one of the two
field values "YES" or "NO". The default value is "NO". "Append” is allowed with
both TEXT_1O and SEQUENTIAL_IO. The effect of appending to a file is that all
output to that file is written to the end of the named external file. This field may only
be used with the "OPEN" operation, using the field name "APPEND" in connection with
a "CREATE" operation shall raise USE_ERROR. Furthermore, a USE_ERROR is raised
if the specified file is a terminal device or another device.

Example

To append to a file, one would write:

" AW => Yesn

- Blocking vs. non-blocking 1/O:

The blocking field name is "Blocking” and the field values are "TASKS" and
"PROGRAM". The default value is "PROGRAM". "Blocking=>Tasks" causes the
calling task, but no others, to wait for the completion of an I[/O operation.
"Blocking=>program" causes the all tasks within the program to wait for the completion
of the I/O operation. The blocking mechanism is applicable to TEXT_1O, DIRECT_IO
and SEQUENTIAL_IO. UNIX does not allow the support of "BLOCKING=>TASKS"
currently.

- How characters are read from the keyboard:
The field name is "TERMINAL_INPUT" and the field value is either "LINES" or

178

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Implementation Dependent Characteristics

"CHARACTERS". The effect of the field value "Temminal_input => Characters” is that
characters are read in a2 noncanonical fashion with Minimum_count=1; meaning one
character at a time and Time=0.0 comesponding to that the read operation is not satisfied
until Minimum_Count characters are received. If the field value "LINES" is used the
characters are read one line at a time in canonical mode. The default value is Lines.
"TERMINAL _INPUT" has no effect if the specified file is not already open or if the file
is not open on a terminal. It is permitted for the same terminal device to be opened for
input in both modes as separate Ada file objects. In this case, no user input characters
shall be read from the input device without an explicit input operation on one of the file
objects. The "TERMINAL_INPUT" mechanism is only applicable 1o TEXT_IO.

- Creation of FIFO files:

The field name is "Fifo" and the field value is either "YES" or "NO". "FIFO => YES"
means that the file shall be a named FIFO file. The default value is "No".

For use with TEXT_I/O, the "Fifo" field is only allowed with the Create operation. If
used in connection with an open operation an USE_ERROR is raised.

For SEQUENTIAL_IO, the FIFO mechanism is applicable for both the Create and Open
operation.

In connection with SEQUENTIAL_IO, an additional field name “"O_NDELAY" is used.
The field values allowed for "O_NDELAY" are "YES" and "NO". Default is "NO".
The "O_NDELAY" field name is provided to allow waiting or immediate return. If, for
example, the following form parameter is given:

"Fifo=>Yes, O_Ndelay=>Yes"

then waiting is performed until completion of the operation. The "O_Ndelay” field name
only has meaning in connection with the FIFO facility and is otherwise ignored.

- - Access to Open POSIX files:

The field name is "POSIX_File_Descriptor”. The field value is the character string "2"
which denotes the stderr file. Any other field value will result in USE_ERROR being
raised. The Name parameter provides the value which will be retumed by subsequent
usage of the Name function. The operation does not change the state of the file.
During the period that the Ada file is open, the result of any file operations on the file
descriptor are undefined. Note that this is a method to make stderr accessible from an

Ada program.

File Access
The following guidelines should be observed when performing file 1/O operations:

- At a given instant, any number of files in an Ada program can be associated with
comresponding extemal files.

179

e DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User’s Guide

- When sharing files between programs, it is the responsibility of the progiammer to determine
the effects of sharing files.

- The RESET and OPEN operations to files with mode OUT_FILE will empty the contents of
the file in SEQUENTIAL_IO and TEXT_IO.

- Files can be interchanged between SEQUENTIAL_IO and DIRECT_IO without any special
operations if the files are of the same object type.

F3.3 Buffering

The Ada 1)O system provides buffering in addition to the buffering provided by SunOS/Solaris.
The Ada TEXT_IO packages will flush all output to the operating system under the following
circumstances:

1. The device is a terminal device and an end of line, end of page, or end of file has
occurred.

2. The device is a terminal device and the same Ada program makes an Ada TEXT_]O
input request or another file object representing the same device.
Please refer to Appendix E (Root Library Support) for the full specifications of all I/O packages.

F.9 Machine Code Insertions
Currently machine code insertions are not supported.

180

